A CMOS-memristor hybrid system for implementing stochastic binary spike timing-dependent plasticity

Philos Trans A Math Phys Eng Sci. 2022 Jul 25;380(2228):20210018. doi: 10.1098/rsta.2021.0018. Epub 2022 Jun 6.

Abstract

This paper describes a fully experimental hybrid system in which a [Formula: see text] memristive crossbar spiking neural network (SNN) was assembled using custom high-resistance state memristors with analogue CMOS neurons fabricated in 180 nm CMOS technology. The custom memristors used NMOS selector transistors, made available on a second 180 nm CMOS chip. One drawback is that memristors operate with currents in the micro-amperes range, while analogue CMOS neurons may need to operate with currents in the pico-amperes range. One possible solution was to use a compact circuit to scale the memristor-domain currents down to the analogue CMOS neuron domain currents by at least 5-6 orders of magnitude. Here, we proposed using an on-chip compact current splitter circuit based on MOS ladders to aggressively attenuate the currents by over 5 orders of magnitude. This circuit was added before each neuron. This paper describes the proper experimental operation of an SNN circuit using a [Formula: see text] 1T1R synaptic crossbar together with four post-synaptic CMOS circuits, each with a 5-decade current attenuator and an integrate-and-fire neuron. It also demonstrates one-shot winner-takes-all training and stochastic binary spike-timing-dependent-plasticity learning using this small system. This article is part of the theme issue 'Advanced neurotechnologies: translating innovation for health and well-being'.

Keywords: CMOS analogue neurons; analogue current scaling; non-volatile memristors; spike timing-dependent plasticity; spiking neural networks; stochastic-binary STDP.

MeSH terms

  • Neural Networks, Computer*
  • Neurons*